

25 Lock nuts

Designs and variants 1090
Lock nuts requiring a keyway 1093
KM, KML and HM .. T metric lock nuts 1093
N and AN inch lock nuts 1093
HM and HME metric lock nuts 1094
The locking principles 1094
Lock nuts with integral locking 1095
KMFE lock nuts 1095
KMK lock nuts 1095
The locking principle 1095
Precision lock nuts with locking pins 1096
The locking principle 1097
Precision lock nuts with axial locking screws 1097
The locking principle 1097
Product data 1098
(Dimension standards, tolerances, mating shaft threads, loosening torque)
Installation and removal 1100
Lock nuts requiring a keyway 1100
Using lock nuts with lock washer to lock a bearing 1100
Using lock nuts with locking clips to lock a bearing 1100
Lock nuts with integral locking 1101
Mounting. 1101
Dismounting 1101
Precision lock nuts with locking pins 1102
Installation 1102
Adjustment 1102
Removal 1102
Designation system 1103
Product tables
25.1 KM(L) and HM .. T lock nuts 1104
25.2 MB(L) lock washers 1106
25.3 HM lock nuts 1108
25.4 MS locking clips 1110
25.5 KMFE lock nuts with a locking screw 1112
25.6 KMT precision lock nuts with locking pins 1114
25.7 KMTA precision lock nuts with locking pins 1116

25 Lock nuts

Lock nuts are used to locate bearings onto a shaft. Additionally, they can be used to mount bearings with a tapered bore onto tapered shaft seats and adapter sleeves, and to dismount bearings from withdrawal sleeves. Lock nuts are also frequently used to secure gears, belt pulleys and other machine components.

Lock nuts have to be secured to prevent unintentional loosening by:

- a locking device that engages a keyway in the shaft or key slot in the adapter sleeve, or
- a locking mechanism integrated in the nut

When choosing or replacing a lock nut, there are a number of factors that should be taken into consideration. They include, but are not limited to:

- Space - axial and radial
- Shaft rotation - one or both directions
- Axial loads
- Dynamic behaviour of the application
- Cost and downtime of machining keyways in shafts vs. other locking methods
- Ease and frequency of assembly and disassembly
- Precision

Designs and variants

SKF lock nuts provide a variety of ways to secure the nut onto a shaft. The lock nuts listed here constitute the basic SKF assortment. Lock nuts with other locking methods can be supplied on request. For additional information, contact SKF.
The following tables provide an overview over the basic SKF assortment:

- table 1 for SKF industrial lock nuts
- table 2, page 1092 for SKF precision lock nuts

Lock nuts with integral locking reduce the cost of the shaft as no keyway is required. Installation is quicker and easier because no separate locking device is necessary. However, the loosening torque of these lock nuts requires more attention. For information on loosening torque, refer to Product data, page 1098.

Table 1
SKF industrial lock nuts
King

Locking principle
Locks with a separate lock
washer engaged in a key-
way in the shaft thread and
having a tab that is bent
over into one of the slots in

the nut \begin{tabular}{ll}

Locks with a separate lock-
ing clip that is attached to
the nut and engages with a
keyway in the shaft thread
and one of the slots in the
nut
:---
that engages with a keyway
in the shaft thread and is
secured to the nut by two
screws and locking wire

Locks by tightening the

grub screw to press the lock

nut thread against the shaft

thread

\quad

Locks by tightening the

grub screws to press a

threaded steel insert in the

lock nut against the shaft

thread
\end{tabular}

25 Lock nuts

Table 2

SKF precision lock nuts

KMT KMTA Precision lock nuts with locking pins	KMD Precision lock nuts with axial locking screws
thread 10 to 200 mm (sizes 0 to 40) Larger sizes on request thread 25 to 200 mm (sizes 5 to 40)	thread 20 to 105 mm (sizes 4 to 21) These lock nuts are not listed in this catalogue, but can be found online at skf.com/go/17000-25-6.
Maximum axial run-out between the locating face and thread: $0,005 \mathrm{~mm}$	Maximum axial run-out between the locating face and thread: $0,005 \mathrm{~mm}$
Can be adjusted to compensate for slight angular deviations	Effective axial locking, simple to position
Reusable	Reusable
Simple to install and remove	Simple to install and remove
For shaft threads without keyways	For shaft threads without keyways
Designed for frequent installation and removal	Designed for frequent installation and removal
High axial load capacity	

Locking principle

Locks to the shaft thread by friction generated by tightening three radial locking pins with grub screws against its unloaded flanks

Locks to the shaft thread by friction generated by tightening four axial screws that press the rear part of the nut against the unloaded thread flanks

Lock nuts requiring a keyway

KM, KML and HM .. T metric lock nuts

KM and KML lock nuts (fig. 1):

- have metric threads
- are designed to be used with lock washers
- have four equally-spaced slots located around their circumference to accommodate a hook or impact spanner (fig. 2)
- are also referred to as shaft or withdrawal nuts
- are available for thread M 10x0,75 to M 200x3 (sizes 0 to 40)
- can be locked with either the MB lock washer (fig. 3) or with a stronger, MB .. A lock washer

KML lock nuts have a lower cross-sectional height than KM lock nuts.

HM .. T lock nuts (fig. 1):

- have metric trapezoidal threads
- are also referred to as removal nuts
- are available for thread $\operatorname{Tr} 210 \times 4$ to Tr 280×4 (sizes 42 to 56)

For some sizes, no lock washer is available because these nuts are intended to dismount bearings with a tapered bore from a withdrawal sleeve.

KM, KML and HM...T lock nuts can be reused, provided they are not damaged. A new lock washer should be used each time the corresponding lock nut is installed.

Features and benefits

- Simple, stable and reliable fastening
- Wide range of sizes
- Easy to install and remove
- Thread diameters ranging from 10 to 280 mm

N and AN inch lock nuts

N and AN inch lock nuts (fig. 1):

- using a W lock washer (fig. 3) are available up to and including size 44 (thread diameter 8.628 in .)
- using a locking plate (fig. 4) are low-profile-series lock nuts for nominal thread diameters ranging from 9.442 to 37.410 in. (sizes N 048 to N 950)
- have four, equally spaced slots around their circumference to accommodate a hook or impact spanner (fig. 2)
- are also referred to as shaft or withdrawal nuts
- N 00 to N 14 , AN 15 to AN 40 and N 44 lock nuts are normal series lock nuts commonly used together with bearings in the $12,13,222,223$ and 232 series up to size 23244, mounted directly to the shaft or via an adapter sleeve.
- N 022 to N 044 lock nuts are low-profileseries lock nuts commonly used together with bearings in the 230 series. They can also be used to secure other bearing types and other machine components.
- N lock nuts with a locking plate are commonly used with bearings in the 230, 231 and 232 series (sizes ≥ 48), but can also be used to retain any suitable bearing or other machine component.

N and AN lock nuts can be reused, provided they are not damaged. A new lock washer or locking plate should be used each time the corresponding lock nut is installed.

Features and benefits

- Simple, stable and reliable fastening element
- Wide range of sizes
- Easy to install and remove
- Lock washers available for thread 0.391 to 8.628 in. (sizes 00 to 44)
- Locking plates available for thread 9.442 to 18.894 in. (sizes 048 to 096) and for thread 19.682 to 37.410 in. (sizes 500 to 950)

These lock nuts are not listed in this catalogue, but can be found online at
skf.com/go/17000-25-8.

Fig. 1
KM, KML, HM .. T, AN and N (size ≤ 44) lock nut

Fig. 2
KM, KML, HM .. T, AN and N (size ≤ 44) lock nut

Fig. 3
MB or W lock washer

Fig. 4

PL locking plate

HM and HME metric lock nuts

HM and HME lock nuts (fig. 5):

- have metric trapezoidal threads
- have eight equally-spaced slots located around their circumference to accommodate an impact spanner (fig. 6)
- are located on the shaft by MS locking clips (fig. 7)

When compared to HM lock nuts, HME lock nuts have a recessed side face to accommodate axial displacement of CARB toroidal roller bearings (fig. 8).

HM and HME lock nuts can be reused, provided they are not damaged. A new locking clip should be used each time the corresponding lock nut is reinstalled.

Features and benefits

- Simple, stable and reliable fastening element
- Wide range of sizes
- Easy to install and remove
- Available for thread $\operatorname{Tr} 220 \times 4$ to $\operatorname{Tr} 1120 \times 8$ (sizes 44 to /1120)

The locking principles

Lock washers, locking clips and locking plates are simple, stable and reliable fastening elements.

- Lock washers (fig. 3, page 1093) engage a keyway in a shaft, or adapter sleeve thread. The washer locks the nut in position when one of the washer tabs is bent into one of the slots on the nut's outside diameter (fig. 9).
- Locking plates (fig. 4, page 1093) engage a keyway in a shaft or adapter sleeve and are attached to the side face of the nut by two bolts secured with locking wire. A locking plate consists of a plate, two hexagonal head bolts with drilled heads and lock wire to secure them (fig. 10).
- Locking clips (fig. 7) engage a keyway in a shaft or adapter sleeve and one of the slots in the outside diameter of the lock nut. Locking clips are attached to the nut by a bolt (fig. 11).

Fig. 5
HM and HME lock nut

Fig. 6
HM and HME lock nut

Fig. 7
MS locking clip

Lock nuts with integral locking

Lock nuts with integral locking reduce the cost of the shaft as no keyway is required. Installation is quicker and easier because no separate locking device is necessary.

KMFE lock nuts

KMFE lock nuts (fig. 12):

- are designed to locate CARB toroidal roller bearings, sealed spherical roller bearings and sealed self-aligning ball bearings axially on a shaft
- have appropriate contact faces for the intended bearings
- are available for thread M 20×1 to M 200x3 (sizes 4 to 40)

KMFE lock nuts should not be used on shafts with a keyway. They should only be used with special adapter sleeves with a narrow slot. Damage to the nut can result if the grub screw aligns with a keyway or wide slot.
KMFE lock nuts can be reused, provided they are not damaged.

Features and benefits

- Maximum axial run-out between the locating face and thread: 0,02 to $0,03 \mathrm{~mm}$
- No keyway required
- Simple to install
- Simple and robust locking
- Reusable
- Appropriate contact faces for intended bearings
- Equipped with visual marks for the use of tightening angles

KMK lock nuts

KMK lock nuts (fig. 13):

- are intended to locate radial bearings in less demanding applications
- are available for thread M 10×0,75 to M 100x2 (sizes 0 to 20)

KMK lock nuts should not be used on shafts with keyways or adapter sleeves with key slots. Damage to the locking device can result if it aligns with a keyway or slot. KMK lock nuts can be reused, provided they are not damaged.

These lock nuts are not listed in this catalogue, but can be found online at skf.com/go/17000-25-5.

The locking principle

Lock nuts with integral locking are locked by friction. The friction is sufficient to lock the nut in place.

KMFE lock nuts have an integral grub (set) screw, to lock the nut in place. When the grub screw is tightened, it causes the nut thread to deform and press against the shaft or sleeve thread (fig. 14).

KMK have a threaded steel insert in their bore. The threads on the insert match the lock nut threads. The insert acts as a pressure plate when a grub screw, which runs through the body of the lock nut, is tightened (fig. 15).

Fig. 12
KMFE lock nut

Fig. 13
KMK lock nut

Fig. 14
Locking with a locking screw - KMFE

Fig. 15
Locking with an integral locking device - KMK

Precision lock nuts with locking pins

KMT and KMTA lock nuts are intended for applications where high precision, simple assembly and reliable locking are required1). The three equally-spaced locking pins enable these lock nuts to be accurately positioned at right angles to the shaft. However, they can also be adjusted to compensate for slight angular deviations of adjacent components.

KMT lock nuts (fig. 16):

- are available for thread $\mathrm{M} 10 \times 0,75$ to M 200x3 (sizes 0 to 40)
- are available on request for thread $\operatorname{Tr} 220 \times 4$ to $\operatorname{Tr} 420 \times 5$ (sizes 44 to 84)

KMTA lock nuts (fig. 17):

- are available for thread M $25 \times 1,5$ to M 200x3 (sizes 5 to 40)
- have a cylindrical outside surface and, for some sizes, a different thread pitch than KMT lock nuts
- are intended primarily for applications where space is limited and the cylindrical outside surface can be used as an element of a gap-type seal

Features and benefits

- Maximum axial run-out between the locating face and thread (sizes ≤ 40): $0,005 \mathrm{~mm}$
- Adjustable to compensate for slight angular deviations (fig. 18)
- Fine thread pitch
- Withstands high axial loads
- Reliable, effective locking mechanism
- Simple installation and removal
- No keyway required1)
- Reusable
- Designed for frequent installation and removal

Fig. 18
Adjustable to minimise axial run-out

The locking principle

KMT and KMTA series precision lock nuts have three locking pins equally spaced around their circumference (fig. 19 to fig. 21) that can be tightened with grub screws to lock the nut onto the shaft. The end face of each pin is machined to match the shaft thread. The holes for the locking pins and grub screws are drilled with their axis parallel to the loaded flanks of the shaft thread (fig. 22). The locking screws, when tightened to the recommended torque, provide sufficient friction between the ends of the pins and the unloaded thread flanks to prevent the nut from loosening under normal operating conditions (Loosening torque, page 1098). Because the locking pins are tightened against the unloaded flanks of the shaft thread, they are not subjected to any application loads imposed on the nut.

Precision lock nuts with axial locking screws

KMD lock nuts (fig. 23) were designed specifically for screw compressors but can be used in other applications where high precision, simple assembly and reliable locking are required. Once the four locking screws are tightened, the lock nut will be accurately positioned at right angles to the shaft thread. The locking screws, when tightened to the recommended tightening torque, preload the lock nut and shaft threads and generate sufficient friction to prevent the nut from loosening under normal operating conditions. The locking screws do not carry any part of the supported load in service.

KMD lock nuts are available for thread M 20×1 to M 105×2 (sizes 4 to 21).

KMTA lock nuts with holes around their circumference and in one side face

Fig. 22
Locking with locking pins

Features and benefits

- Maximum axial run-out between the locating face and thread: $0,005 \mathrm{~mm}$
- Adjustable for precise axial positioning
- Effective locking prevents the nut from loosening under normal operating conditions
- Simple installation and removal
- No keyway required
- Reusable
- Designed for frequent installation and removal

These lock nuts are not listed in this catalogue, but can be found online at skf.com/go/17000-25-6.

The locking principle

KMD lock nuts are locked with axial locking screws (fig. 24). The front of the lock nut locates the component on the shaft. The rear is tightened against the unloaded flanks of the shaft thread by axial locking screws, creating sufficient friction to prevent the lock nut from loosening under normal operating conditions

Fig. 23
KMD precision lock nut

Fig. 24

Locking with axial locking screws

Product data

	Lock nuts requiring a keyway KM, KML, HM ..T, HM and HME	Lock nuts with integral locking KMFE and KMK
Dimension standards	ISO 2982-2	ISO 2982-2, except for the lock nut width and the outside diameter of the clamp face Grub screws: - KMFE \rightarrow ISO 4028, material class 45H - KMK \rightarrow ISO 4026, material class 45H
Tolerances	KM and KML Metric thread, 5H: ISO 965-3 Maximum axial run-out locating face/thread: 0,02 to $0,06 \mathrm{~mm}$, depending on the lock nut size Mounting slots according to DIN 981 HM, HME and HM .. T Metric trapezoidal thread, 7H: ISO 2903 Maximum axial run-out locating face/thread: 0,06 to $0,16 \mathrm{~mm}$, depending on the lock nut size	Metric thread, 5H: ISO 965-3
Mating shaft threads (recommendation)	KM and KML Metric thread, 6g: ISO 965-3 HM, HME and HM .. T Metric trapezoidal thread, 7e: ISO 2903	Metric thread, 6g: ISO 965-3
Loosening torque	-	KMFE and KMK lock nuts are locked on the shaft (sleeve) by friction. The friction, and therefore the loosening torque, varies as a result of the accuracy of the tightening torque of the grub (set) screw, the surface finish of the shaft (sleeve) thread, the amount of lubricant on the thread, etc. The lock nuts should be properly mounted to threads that are dry or only have a minimum amount of lubricant on them. KMFE and KMK lock nuts provide sufficient locking for intended bearing applications.

Precision lock nuts with locking pins
KMT and KMTA

Metric thread: ISO 965-3

Metric thread, 5H: ISO 965-3
Maximum axial run-out locating face/thread (sizes ≤ 40): $0,005 \mathrm{~mm}$

Metric thread, 6g: ISO 965-3
Trapezoidal thread, 7e: ISO 2903

KMT and KMTA lock nuts are locked on the shaft (sleeve) by friction. The friction, and therefore the loosening torque, varies as a result of the accuracy of the tightening torque of the grub screw, the surface finish of the shaft thread, the amount of lubricant on the thread, etc. KMT and KMTA lock nuts should be properly mounted to threads that are dry or only have a minimum amount of lubricant on them.

Providing that they are properly mounted to a dry or minimally lubricated thread, experience has shown that SKF KMT and KMTA lock nuts have sufficient locking for typical super-precision and general rolling bearing applications.

Installation and removal

Lock nuts requiring a keyway

Lock nuts requiring a keyway are easy to install. Each nut is provided with four equally-spaced slots around their circumference to accommodate a hook or impact spanner. The designations of the associated spanners are listed in the relevant product tables.

Lock nuts requiring a keyway can be reused, provided they are not damaged. A new lock washer, locking clip or locking plate should be used each time the corresponding lock nut is reinstalled.

Using lock nuts with lock washer to lock a bearing

Mounting bearings and components on a cylindrical shaft

1 Put the bearing in place onto the cylindrical shaft.
2 Go ahead with step 5 below Locking the bearing.

Mounting bearings on an adapter sleeve or tapered seat

1 Slide the bearing onto the adapter sleeve or tapered seat.
2 With the chamfer facing the bearing, screw the nut (without the lock washer) onto the adapter sleeve or shaft thread (fig. 25).
3 Tighten the nut with a hook or impact spanner until the correct clearance in the bearing is obtained (fig. 26).
4 Remove the nut. Go to step 5.

Locking the bearing

5 Slide the lock washer onto the thread until it touches the bearing. With the chamfer facing the bearing, screw the lock nut into place (fig. 27).
6 Tighten the nut firmly against the lock washer and bearing with a hook or impact spanner, making sure to not over tighten the nut. For bearings on adapter sleeves or tapered shafts, make sure that the bearing is not driven up any further on its seat.
7 Lock the nut in place by bending one of the lock washer tabs down into one of the slots on the nut (fig. 28). Do not bend the tab to the bottom of the slot.

Tighten the nut with a hook or impact spanner

Using lock nuts with locking clips to lock a bearing

1 With the bearing or component in position, screw the lock nut into place.
2 Tighten the nut against the bearing or component with an impact spanner (fig. 29), aligning one of the slots in its outside diameter with the keyway in the shaft thread and making sure to not over tighten it.
3 Place the spring washer and locking clip onto the attachment bolt.
4 Position the locking clip in the keyway in the shaft thread, and the slot in the nut outside diameter, and secure with the attachment bolt and spring washer. Align the bolt with one of the threaded holes on the side face of the lock nut.
5 Tighten the bolt with an appropriate wrench (fig. 30).

Screw the nut, without the lock washer, onto the adapter sleeve or shaft thread

Lock nuts with integral locking

Lock nuts with integral locking are easy to install. Each nut is provided with four equally spaced slots around its circumference to accommodate a hook spanner. The designations of the associated spanners are listed in the product table, page 1112.

Lock nuts with integral locking can be reused, provided they are not damaged.

Mounting

Mounting bearings on a tapered seat or special adapter sleeve

1 Slide the bearing onto its tapered seat.
2 With the contact face toward the bearing, screw the nut onto the shaft.
3 Tighten the nut with a hook or impact spanner, until the required internal clearance in the bearing is obtained.
4 Tighten the grub (set) screw to the torque value listed in the product table.

Locking bearings on a cylindrical seat

1 With the bearing in position, screw the lock nut into place.
2 Tighten the nut against the bearing with a hook spanner, making sure to not over tighten it.
3 Tighten the grub (set) screw to the torque value listed in the product table.

Dismounting

1 To remove the lock nut, loosen the grub screw. Even when the grub screw is removed, the lock nut will generate a limited locking torque.
2 In order to completely release the locking system and facilitate the reuse of the lock nut, tap the areas near the grub screw with a hammer and soft bar. Do not damage the threaded bores for the grub screw.
3 Unscrew the lock nut using a hook spanner.

Tighten the nut against the bearing or component with an impact spanner

Precision lock nuts with locking pins

KMT precision lock nuts have slots around their circumference to accommodate a hook or impact spanner (fig. 19, page 1097, and fig. 20, page 1097). The designations of the associated spanners are listed in the product table, page 1114. KMT precision lock nuts with a thread $\leq 75 \mathrm{~mm}($ sizes $\leq 15)$ have additionally to the slots two opposed flats to accommodate a spanner. Those lock nuts with a thread $\geq 80 \mathrm{~mm}$ (sizes ≥ 16) have six slots and no flats.

KMTA precision lock nuts have holes around their circumference and in one side face (fig. 21, page 1097). They can be tightened with a pin wrench or a pin-type face spanner. Associated spanners in accordance with DIN 1810 are listed in the product table, page 1116.

Precision lock nuts with locking pins are designed for frequent installation and removal, provided they are not damaged.

Installation

1 With the bearing in position, screw the lock nut into place.
2 Tighten the nut with a hook or impact spanner making sure not to over tighten it.
3 Tighten the grub screws carefully until the locking pins engage the shaft thread.
4 Tighten the grub screws alternately with a torque wrench until the recommended torque value, listed in the product tables, is achieved.

Precision lock nuts with locking pins should not be used to drive a bearing up onto a tapered seat.

Fig. 31
Example 1: Adjustment procedure for KMT and KMTA lock nuts

Fig. 32
Example 2: Adjustment procedure for KMT and KMTA lock nuts

Designation system

Product type

AN	Lock nut, dimensions in accordance with ANSI standard, normal series
HM	Lock nut with a trapezoidal thread
HME	HM lock nut with a recessed outside diameter
HML	HM lock nut, light series
HMLL	HML lock nut with a lower cross-sectional height
KM	Lock nut dimensions in accordance with ISO standard
KMD	Two-part precision lock nut with axial locking screws
KMFE	Lock nut with an integral locking screw, contact face designed for CARB toroidal roller bearings, sealed spherical roller bearings and sealed self-aligning ball bearings
KMK	Lock nut with an integral locking device
KML	Lock nut with a lower cross-sectional height
KMT	Precision lock nut with locking pins
KMTA	Precision lock nut with locking pins and with cylindrical outside surface (some with different thread pitch to KMT nuts)
N	Lock nut, dimensions in accordance with ANSI standard
	N lock nuts are available in two series; NOO normal series and NOOO low profile series
MB	Lock washer, dimensions in accordance with ISO standard for a KM lock nut
MBL	Lock washer, dimensions in accordance with ISO standard for a KML lock nut
MS	Locking clip, dimensions in accordance with ISO standard for an HM or HME lock nut
PL	Locking plate, dimensions in accordance with ANSI standard
W	Lock washer, dimensions in accordance with ANSI standard
	W lock washers are available in two series; W 00 for lock nuts in normal series (AN and N) and W 000 for lock nuts in low profile series (NO) without an axial tab

Size identification
for metric dimensions

0	10 mm thread diameter
1	12 mm thread diameter
2	15 mm thread diameter
3	17 mm thread diameter
4	$(\times 5) 20 \mathrm{~mm}$ thread diameter
to	to
96	$(\times 5) 480 \mathrm{~mm}$ thread diameter
$/ 500$ to	500 mm thread diameter
to	to
11120	1120 mm thread diameter

for inch dimensions

0	0.391 in. thread diameter
1	0.469 in. thread diameter
2	0.586 in. thread diameter
3	0.664 in. thread diameter
4	0.781 in. thread diameter
to	to
96	18.894 in. thread diameter
500	19.682 in. thread diameter
to	to
950	37.410 in. thread diameter

Suffixes

A	Increased plate thickness for MB lock washers
B	Whitworth thread
H	Bigger contact diameter
L	Smaller contact diameter
P	Sintered material
T	Trapezoidal thread

$25.1 \mathrm{KM}(\mathrm{L})$ and HM .. T lock nuts
M $10 \times 0,75-\mathrm{M} 200 \times 3$
Tr 210×4-Tr 280×4

Dimensions			Axial load carrying capacity static	Mass	Designations Locknut	Associated lock washer	

mm						kN	kg	-		
M 10x0,75	13,5	18	4	3	2	9,8	0,004	- KM 0	MB 0	HN 0
M 12x1	17	22	4	3	2	11,8	0,006	- KM 1	MB 1	HN 1
M 15×1	21	25	5	4	2	14,6	0,009	- KM 2	MB 2	HN 2-3
M 17x1	24	28	5	4	2	19,6	0,012	- KM 3	MB 3	HN 2-3
M 20x1	26	32	6	4	2	24	0,025	- KM 4	MB 4	HN 4
M $25 \times 1,5$	32	38	7	5	2	31,5	0,028	- KM 5	MB 5	HN 5-6
M 30x1,5	38	45	7	5	2	36,5	0,039	- KM 6	MB6	HN 5-6
M $35 \times 1,5$	44	52	8	5	2	50	0,059	- KM 7	MB 7	HN 7
M 40x1,5	50	58	9	6	2,5	62	0,078	- KM 8	MB 8	HN 8-9
M 45x1,5	56	65	10	6	2,5	78	0,11	- KM 9	MB 9	HN 8-9
M 50x1,5	61	70	11	6	2,5	91,5	0,14	- KM 10	MB 10	HN 10-11
M 55×2	67	75	11	7	3	91,5	0,15	- KM 11	MB 11	HN 10-11
M 60x2	73	80	11	7	3	95	0,16	- KM 12	MB 12	HN 12-13
M 65×2	79	85	12	7	3	108	0,19	- KM 13	MB 13	HN 12-13
M 70×2	85	92	12	8	3,5	118	0,23	- KM 14	MB 14	HN 14
M 75×2	90	98	13	8	3,5	134	0,27	- KM 15	MB 15	HN 15
M 80x2	95	105	15	8	3,5	173	0,36	- KM 16	MB 16	HN 16
M 85×2	102	110	16	8	3,5	190	0,41	- KM 17	MB 17	HN 17
M 90x2	108	120	16	10	4	216	0,51	- KM 18	MB 18	HN 18-20
M 95×2	113	125	17	10	4	236	0,55	- KM 19	MB 19	HN 18-20
M 100x2	120	130	18	10	4	255	0,64	- KM 20	MB 20	HN 18-20
M 105x2	126	140	18	12	5	290	0,79	- KM 21	MB 21	HN 21-22
M 110x2	133	145	19	12	5	310	0,87	- KM 22	MB 22	HN 21-22

- Popular item

Dimension G	d_{1}	d_{3}	B	b	h	Axial load carrying capacity static	Mass	Designations Lock nut	Associated lock washer	spanner
mm						kN	kg	-		
M 115x2	137	150	19	12	5	315	0,91	- KM 23	MB 23	TMFN 23-30
M 120×2	$\begin{aligned} & 135 \\ & 138 \end{aligned}$	$\begin{aligned} & 145 \\ & 155 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 265 \\ & 340 \end{aligned}$	$\begin{aligned} & 0,69 \\ & 0,97 \end{aligned}$	- KML 24 - KM 24	MBL 24 MB 24	HN 21-22 TMFN 23-30
M 125x2	148	160	21	12	5	360	1,1	- KM 25	MB 25	TMFN 23-30
M 130×2	$\begin{aligned} & 145 \\ & 149 \end{aligned}$	$\begin{aligned} & 155 \\ & 165 \end{aligned}$	$\begin{aligned} & 21 \\ & 21 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 285 \\ & 365 \end{aligned}$	$\begin{aligned} & 0,8 \\ & 1,1 \end{aligned}$	- KML 26 - KM 26	$\begin{aligned} & \text { MBL } 26 \\ & \text { MB } 26 \end{aligned}$	TMFN 23-30 TMFN 23-30
M 135x2	160	175	22	14	6	430	1,4	- KM 27	MB 27	TMFN 23-30
M 140×2	$\begin{aligned} & 155 \\ & 160 \end{aligned}$	$\begin{aligned} & 165 \\ & 180 \end{aligned}$	$\begin{aligned} & 22 \\ & 22 \end{aligned}$	$\begin{aligned} & 12 \\ & 14 \end{aligned}$	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	$\begin{aligned} & 305 \\ & 430 \end{aligned}$	$\begin{aligned} & 0,92 \\ & 1,4 \end{aligned}$	- KML 28 - KM 28	$\begin{aligned} & \text { MBL } 28 \\ & \text { MB } 28 \end{aligned}$	TMFN 23-30 TMFN 23-30
M 145x2	171	190	24	14	6	520	1,8	- KM 29	MB 29	TMFN 23-30
M 150×2	$\begin{aligned} & 170 \\ & 171 \end{aligned}$	$\begin{aligned} & 180 \\ & 195 \end{aligned}$	$\begin{aligned} & 24 \\ & 24 \end{aligned}$	$\begin{aligned} & 14 \\ & 14 \end{aligned}$	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	$\begin{aligned} & 390 \\ & 530 \end{aligned}$	$\begin{aligned} & 1,25 \\ & 1,9 \end{aligned}$	- KML 30 - KM 30	$\begin{aligned} & \text { MBL } 30 \\ & \text { MB } 30 \end{aligned}$	TMFN 23-30 TMFN 23-30
M 155x3	182	200	25	16	7	540	2,1	- KM 31	MB 31	TMFN 30-40
M 160x3	$\begin{aligned} & 180 \\ & 182 \end{aligned}$	$\begin{aligned} & 190 \\ & 210 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 14 \\ & 16 \end{aligned}$	$\begin{aligned} & 5 \\ & 7 \end{aligned}$	$\begin{aligned} & 405 \\ & 585 \end{aligned}$	$\begin{aligned} & 1,4 \\ & 2,3 \end{aligned}$	- KML 32 - KM 32	$\begin{aligned} & \text { MBL } 32 \\ & \text { MB } 32 \end{aligned}$	TMFN 23-30 TMFN 30-40
M 165x3	193	210	26	16	7	570	2,3	- KM 33	MB 33	TMFN 30-40
M 170x3	$\begin{aligned} & 190 \\ & 193 \end{aligned}$	$\begin{aligned} & 200 \\ & 220 \end{aligned}$	$\begin{aligned} & 26 \\ & 26 \end{aligned}$	$\begin{aligned} & 16 \\ & 16 \end{aligned}$	$\begin{aligned} & 5 \\ & 7 \end{aligned}$	$\begin{aligned} & 430 \\ & 620 \end{aligned}$	$\begin{aligned} & 1,55 \\ & 2,35 \end{aligned}$	- KML 34 - KM 34	$\begin{aligned} & \text { MBL } 34 \\ & \text { MB } 34 \end{aligned}$	TMFN 30-40 TMFN 30-40
M 180x3	$\begin{aligned} & 200 \\ & 203 \end{aligned}$	$\begin{aligned} & 210 \\ & 230 \end{aligned}$	$\begin{aligned} & 27 \\ & 27 \end{aligned}$	$\begin{aligned} & 16 \\ & 18 \end{aligned}$	$\begin{aligned} & 5 \\ & 8 \end{aligned}$	$\begin{aligned} & 450 \\ & 670 \end{aligned}$	$\begin{aligned} & 1,8 \\ & 2,8 \end{aligned}$	- KML 36 - KM 36	$\begin{aligned} & \text { MBL } 36 \\ & \text { MB } 36 \end{aligned}$	TMFN 30-40 TMFN 30-40
M 190x3	$\begin{aligned} & 210 \\ & 214 \end{aligned}$	$\begin{aligned} & 220 \\ & 240 \end{aligned}$	$\begin{aligned} & 28 \\ & 28 \end{aligned}$	$\begin{aligned} & 16 \\ & 18 \end{aligned}$	$\begin{aligned} & 5 \\ & 8 \end{aligned}$	$\begin{aligned} & 475 \\ & 695 \end{aligned}$	$\begin{aligned} & 1,85 \\ & 3,05 \end{aligned}$	- KML 38 - KM 38	$\begin{aligned} & \text { MBL } 38 \\ & \text { MB } 38 \end{aligned}$	TMFN 30-40 TMFN 30-40
M 200x 3	$\begin{aligned} & 222 \\ & 226 \end{aligned}$	$\begin{aligned} & 240 \\ & 250 \end{aligned}$	$\begin{aligned} & 29 \\ & 29 \end{aligned}$	$\begin{aligned} & 18 \\ & 18 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 625 \\ & 735 \end{aligned}$	$\begin{aligned} & 2,6 \\ & 3,35 \end{aligned}$	- KML 40 - KM 40	$\begin{aligned} & \text { MBL } 40 \\ & \text { MB } 40 \end{aligned}$	TMFN 30-40 TMFN 30-40
Tr 210x4	238	270	30	20	10	Contact SKF	5,1	- HM 42 T	-1)	TMFN 40-52
Tr 220x4	250	280	32	20	10	Contact SKF	4,75	- HM 44 T	MB 44	TMFN 40-52
Tr 230x4	260	290	34	20	10	Contact SKF	5,45	HM 46 T	-1)	TMFN 40-52
Tr 240×4	270	300	34	20	10	Contact SKF	5,6	- HM 48 T	MB 48	TMFN 40-52
Tr 250x4	290	320	36	20	10	Contact SKF	7,45	HM 50 T	-1)	TMFN 40-52
Tr 260×4	300	330	36	24	12	Contact SKF	7,55	- HM 52 T	MB 52	TMFN 52-64
Tr 280x4	320	350	38	24	12	Contact SKF	8,65	- HM 56 T	MB 56	TMFN 52-64

25.2 MB(L) lock washers

MB 0-MB 56

Designation Dimensions					Mass		
	d	d_{1}	d_{2}	B	f	M	

Designation Dimensions Mass

-	mm						kg
- MB 0	10	13,5	21	1	3	8,5	0,001
$\begin{aligned} & \text { MB } 1 \\ & \text { MB } 1 \mathrm{~A} \end{aligned}$	12	$\begin{aligned} & 17 \\ & 17 \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 1 \\ & 1,2 \end{aligned}$	3	$\begin{aligned} & 10,5 \\ & 10,5 \end{aligned}$	$\begin{aligned} & 0,002 \\ & 0,0025 \end{aligned}$
- MB 2 MB $2 A$	15	$\begin{aligned} & 21 \\ & 21 \end{aligned}$	$\begin{aligned} & 28 \\ & 28 \end{aligned}$	$\begin{aligned} & 1 \\ & 1,2 \end{aligned}$	4	$\begin{aligned} & 13,5 \\ & 13,5 \end{aligned}$	$\begin{aligned} & 0,003 \\ & 0,0035 \end{aligned}$
- MB 3 MB 3 A	17	$\begin{aligned} & 24 \\ & 24 \end{aligned}$	$\begin{aligned} & 32 \\ & 32 \end{aligned}$	$\begin{aligned} & 1 \\ & 1,2 \end{aligned}$	4	$\begin{aligned} & 15,5 \\ & 15,5 \end{aligned}$	$\begin{aligned} & 0,003 \\ & 0,0035 \end{aligned}$
- MB 4 MB4A	20	$\begin{aligned} & 26 \\ & 26 \end{aligned}$	$\begin{aligned} & 36 \\ & 36 \end{aligned}$	$\begin{aligned} & 1 \\ & 1,2 \end{aligned}$	4	$\begin{aligned} & 18,5 \\ & 18,5 \end{aligned}$	$\begin{aligned} & 0,004 \\ & 0,005 \end{aligned}$
- MB 5 MB 5 A	25	$\begin{aligned} & 32 \\ & 32 \end{aligned}$	$\begin{aligned} & 42 \\ & 42 \end{aligned}$	$\begin{aligned} & 1,25 \\ & 1,8 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 23 \\ & 23 \end{aligned}$	$\begin{aligned} & 0,006 \\ & 0,0085 \end{aligned}$
- MB 6 MB 6 A	30	$\begin{aligned} & 38 \\ & 38 \end{aligned}$	$\begin{aligned} & 49 \\ & 49 \end{aligned}$	$\begin{aligned} & 1,25 \\ & 1,8 \end{aligned}$	5 5	$\begin{array}{r} 27,5 \\ 27,5 \end{array}$	$\begin{aligned} & 0,008 \\ & 0,011 \end{aligned}$
- MB 7 MB 7 A	35	$\begin{aligned} & 44 \\ & 44 \end{aligned}$	$\begin{aligned} & 57 \\ & 57 \end{aligned}$	$\begin{aligned} & 1,25 \\ & 1,8 \end{aligned}$	6	$\begin{aligned} & 32,5 \\ & 32,5 \end{aligned}$	$\begin{aligned} & 0,011 \\ & 0,016 \end{aligned}$
- MB 8 MB 8 A	40	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 62 \\ & 62 \end{aligned}$	$\begin{aligned} & 1,25 \\ & 1,8 \end{aligned}$	6 6	$\begin{aligned} & 37,5 \\ & 37,5 \end{aligned}$	$\begin{aligned} & 0,013 \\ & 0,018 \end{aligned}$
- MB 9 MB 9 A	45	$\begin{aligned} & 56 \\ & 56 \end{aligned}$	$\begin{aligned} & 69 \\ & 69 \end{aligned}$	$\begin{aligned} & 1,25 \\ & 1,8 \end{aligned}$	6	$\begin{aligned} & 42,5 \\ & 42,5 \end{aligned}$	$\begin{aligned} & 0,015 \\ & 0,021 \end{aligned}$
- MB 10 MB 10 A	50	$\begin{aligned} & 61 \\ & 61 \end{aligned}$	$\begin{aligned} & 74 \\ & 74 \end{aligned}$	$\begin{aligned} & 1,25 \\ & 1,8 \end{aligned}$	6	$\begin{aligned} & 47,5 \\ & 47,5 \end{aligned}$	$\begin{aligned} & 0,016 \\ & 0,023 \end{aligned}$
- MB 11 MB 11 A	55	$\begin{aligned} & 67 \\ & 67 \end{aligned}$	$\begin{aligned} & 81 \\ & 81 \end{aligned}$	$\begin{aligned} & 1,5 \\ & 2,5 \end{aligned}$	8	$\begin{aligned} & 52,5 \\ & 52,5 \end{aligned}$	$\begin{aligned} & 0,022 \\ & 0,037 \end{aligned}$
- MB 12 MB 12 A	60	$\begin{aligned} & 73 \\ & 73 \end{aligned}$	$\begin{aligned} & 86 \\ & 86 \end{aligned}$	$\begin{array}{r} 1,5 \\ 2,5 \end{array}$	8	$\begin{array}{r} 57,5 \\ 57,5 \end{array}$	$\begin{aligned} & 0,024 \\ & 0,04 \end{aligned}$
- MB 13 MB 13 A	65	$\begin{aligned} & 79 \\ & 79 \end{aligned}$	$\begin{aligned} & 92 \\ & 92 \end{aligned}$	$\begin{aligned} & 1,5 \\ & 2,5 \end{aligned}$	8	$\begin{aligned} & 62,5 \\ & 62,5 \end{aligned}$	$\begin{aligned} & 0,03 \\ & 0,05 \end{aligned}$
- MB 14 MB 14 A	70	$\begin{aligned} & 85 \\ & 85 \end{aligned}$	$\begin{aligned} & 98 \\ & 98 \end{aligned}$	$\begin{aligned} & 1,5 \\ & 2,5 \end{aligned}$	8	$\begin{aligned} & 66,5 \\ & 66,5 \end{aligned}$	$\begin{aligned} & 0,032 \\ & 0,053 \end{aligned}$
- MB 15 MB 15 A	75	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\begin{aligned} & 104 \\ & 104 \end{aligned}$	$\begin{aligned} & 1,5 \\ & 2,5 \end{aligned}$	8	$\begin{aligned} & 71,5 \\ & 71,5 \end{aligned}$	$\begin{aligned} & 0,035 \\ & 0,058 \end{aligned}$

-	mm						kg
- MB 16 MB 16 A	80	$\begin{aligned} & 95 \\ & 95 \end{aligned}$	$\begin{aligned} & 112 \\ & 112 \end{aligned}$	$\begin{aligned} & 1,75 \\ & 2,5 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 76,5 \\ & 76,5 \end{aligned}$	$\begin{aligned} & 0,046 \\ & 0,066 \end{aligned}$
- MB 17 MB 17 A	85	$\begin{aligned} & 102 \\ & 102 \end{aligned}$	$\begin{aligned} & 119 \\ & 119 \end{aligned}$	$\begin{aligned} & 1,75 \\ & 2,5 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 81,5 \\ & 81,5 \end{aligned}$	$\begin{aligned} & 0,053 \\ & 0,076 \end{aligned}$
- MB 18 MB 18 A	90	$\begin{aligned} & 108 \\ & 108 \end{aligned}$	$\begin{aligned} & 126 \\ & 126 \end{aligned}$	$\begin{aligned} & 1,75 \\ & 2,5 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 86,5 \\ & 86,5 \end{aligned}$	$\begin{aligned} & 0,061 \\ & 0,087 \end{aligned}$
- MB 19 MB 19 A	95	$\begin{aligned} & 113 \\ & 113 \end{aligned}$	$\begin{aligned} & 133 \\ & 133 \end{aligned}$	$\begin{aligned} & 1,75 \\ & 2,5 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 91,5 \\ & 91,5 \end{aligned}$	$\begin{aligned} & 0,066 \\ & 0,094 \end{aligned}$
$\begin{aligned} & \text { - MB } 20 \\ & \text { MB } 20 \mathrm{~A} \end{aligned}$	100	$\begin{aligned} & 120 \\ & 120 \end{aligned}$	$\begin{aligned} & 142 \\ & 142 \end{aligned}$	$\begin{aligned} & 1,75 \\ & 2,5 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & 96,5 \\ & 96,5 \end{aligned}$	$\begin{aligned} & 0,077 \\ & 0,11 \end{aligned}$
- MB 21	105	126	145	1,75	12	100,5	0,083
- MB 22	110	133	154	1,75	12	105,5	0,091
- MB 23	115	137	159	2	12	110,5	0,11
- MBL 24 - MB 24	120	$\begin{aligned} & 135 \\ & 138 \end{aligned}$	$\begin{aligned} & 152 \\ & 164 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 14 \\ & 14 \end{aligned}$	$\begin{aligned} & 115 \\ & 115 \end{aligned}$	$\begin{aligned} & 0,07 \\ & 0,11 \end{aligned}$
- MB 25	125	148	170	2	14	120	0,12
$\begin{aligned} & \text { MBL } 26 \\ - & \text { MB } 26 \end{aligned}$	130	$\begin{aligned} & 145 \\ & 149 \end{aligned}$	$\begin{aligned} & 161 \\ & 175 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 14 \\ & 14 \end{aligned}$	$\begin{aligned} & 125 \\ & 125 \end{aligned}$	$\begin{aligned} & 0,08 \\ & 0,12 \end{aligned}$
- MB 27	135	160	185	2	14	130	0,14
- MBL 28 - MB 28	140	$\begin{aligned} & 155 \\ & 160 \end{aligned}$	$\begin{aligned} & 172 \\ & 192 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 16 \\ & 16 \end{aligned}$	$\begin{aligned} & 135 \\ & 135 \end{aligned}$	$\begin{aligned} & 0,09 \\ & 0,14 \end{aligned}$
- MB 29	145	172	202	2	16	140	0,17
- MBL 30 - MB 30	150	$\begin{aligned} & 170 \\ & 171 \end{aligned}$	$\begin{aligned} & 189 \\ & 205 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 16 \\ & 16 \end{aligned}$	$\begin{aligned} & 145 \\ & 145 \end{aligned}$	$\begin{aligned} & 0,1 \\ & 0,18 \end{aligned}$
- MB 31	155	182	212	2,5	16	147,5	0,2
- MBL 32 - MB 32	160	$\begin{aligned} & 180 \\ & 182 \end{aligned}$	$\begin{aligned} & 199 \\ & 217 \end{aligned}$	$\begin{aligned} & 2,5 \\ & 2,5 \end{aligned}$	$\begin{aligned} & 18 \\ & 18 \end{aligned}$	$\begin{aligned} & 154 \\ & 154 \end{aligned}$	$\begin{aligned} & 0,14 \\ & 0,22 \end{aligned}$
- MB 33	165	193	222	2,5	18	157,5	0,24

Designation	Dimensions					Mass	
		d_{1}	d_{2}	B	f	M	
-	mm						kg
M MBL 34	170	190	211	2,5	18	164	0,15
- MB 34		193	232	2,5	18	164	0,24
- MBL 36	180	200	222	2,5	20	174	0,16
- MB 36		203	242	2,5	20	174	0,26
MBL 38	190	210	232	2,5	20	184	0,17
- MB 38		214	252	2,5	20	184	0,26
MBL 40	200	222	245	2,5	20	194	0,22
- MB 40		226	262	2,5	20	194	0,28
- MB 44	220	250	292	3	24	213	0,35
- MB 48	240	270	312	3	24	233	0,45
- MB 52	260	300	342	3	28	253	0,65
- MB 56	280	320	362	3	28	273	0,7

25.3 HM lock nuts
$\operatorname{Tr} 280 \times 4-\operatorname{Tr} 1120 \times 8$

mm (kg													
Tr 280x4	310	293	330	38	50	24	10	5,75	-	HM 3056	MS 3056	TMFN 52-64	-
Tr 300x4	336	316	360	42	54	24	12	8,35		HM 3060	MS 3060	TMFN 52-64	-
	340	326	380	40	53	24	12	11,5		HM 3160	MS 3160	TMFN 52-64	-
Tr 320x5	356	336	380	42	55	24	12	9		HM 3064	MS 3068-64	TMFN 52-64	-
	360	346	400	42	56	24	12	13		HM 3164	MS 3164	TMFN 52-64	-
Tr 340x5	376	356	400	45	58	24	12	11		HM 3068	MS 3068-64	TMFN 52-64	-
	400	373	440	55	72	28	15	24		HM 3168	MS 3172-68	TMFN 64-80	M 10
Tr 360x5	394	375	420	45	58	28	13	11,5		HM 3072	MS 3072	TMFN 64-80	
	420	393	460	58	75	28	15	26,5		HM 3172	MS 3172-68	TMFN 64-80	M 10
Tr 380x5	422	399	450	48	62	28	14	15		HM 3076	MS 3080-76	TMFN 64-80	-
	440	415	490	60	77	32	18	32		HM 3176	MS 3176	TMFN 64-80	M 10
Tr 400x5	442	419	470	52	66	28	14	17		HM 3080	MS 3080-76	TMFN 64-80	-
	460	440	520	62	82	32	18	38		HM 3180	MS 3184-80	TMFN 64-80	M 10
Tr 420x5	462	439	490	52	66	32	14	18,5		HM 3084	MS 3084	TMFN 64-80	-
	490	460	540	70	90	32	18	45		HM 3184	MS 3184-80	TMFN 80-500	M 10
Tr 440x5	490	463	520	60	77	32	15	26		HM 3088	MS 3092-88	TMFN 64-80	M 10
	510	478	560	70	90	36	20	46,5		HM 3188	MS 3192-88	TMFN 80-500	M 10
Tr 460x5	510	483	540	60	77	32	15	27		HM 3092	MS 3092-88	TMFN 80-500	M 10
	540	498	580	75	95	36	20	50,5		HM 3192	MS 3192-88	TMFN 80-500	M 10
Tr 480x5	560	528	620	75	95	36	20	62		HM 3196	MS 3196	TMFN 80-500	M 10
Tr 500x5	550	523	580	68	85	36	15	33,5		HM 30/500	MS 30/500-96	TMFN 500-600	M 10
Tr 530x6	590	558	630	68	90	40	20	42,5		HM 30/530	MS 30/600-530	TMFN 500-600	M 10
Tr 560x6	610	583	650	75	97	40	20	44,5		HM 30/560	MS 30/560	TMFN 500-600	M 10
Tr 600x6	660	628	700	75	97	40	20	52,5		HM 30/600	MS 30/600-530	TMFN 500-600	M 10
Tr 630x6	690	658	730	75	97	45	20	55		HM 30/630	MS 30/630	TMFN 500-600	M 10
Tr 670x6	740	703	780	80	102	45	20	68,5		HM 30/670	MS 30/670	TMFN 600-750	M 10
Tr 710x7	780	742	830	90	112	50	25	91,5		HM 30/710	MS 30/710	TMFN 600-750	M 12
Tr 750x7	820	782	870	90	112	55	25	94		HM 30/750	MS 30/800-750	TMFN 600-750	M 12

- Popular item

Dimensions								Mass	Designations Lock nut	Associated locking clip	spanner	eye bolt
G	d_{1}	d_{2}	d_{3}	B	B_{5}	b	h					
mm								kg	-			
Tr 800x7	870	832	920	90	112	55	25	99,5	- HM 30/800	MS 30/800-750	TMFN 600-750	M12
Tr 850x7	925	887	980	90	115	60	25	115	- HM 30/850	MS 30/900-850	-	M12
Tr 900x7	975	937	1030	100	125	60	25	131	- HM 30/900	MS 30/900-850	-	M16
Tr 950x8	1025	985	1080	100	125	60	25	139	- HM 30/950	MS 30/950	-	M16
Tr 1000x8	1085	1040	1140	100	125	60	25	157	- HM 30/1000	MS 30/1000	-	M16
Tr 1060x8	1145	1100	1200	100	125	60	25	166	- HM 30/1060	MS 30/1000	-	M 16
Tr 1120x8	1205	1160	1260	100	125	60	25	175	- HM 30/1120	MS 30/1000	-	M 16

25.4 MS locking clips

MS 3044 - MS 31/1000

Designations Locking clip	Included hexagonal head bolt	spring washer in accordance with DIN	B	Dimensions				

- Popular item

Designations Locking clip	Included hexagonal head bolt	Dimensions						Mass
		spring washer in accordance with DIN 128	B	M	M_{1}	M_{2}	M_{3}	
-			mm					kg
- MS 3192-88	M 16x30	A16	36	15	5	43	18	0,097
MS 3196	M 16x30	A16	36	15	5	53	18	0,11
MS 31/500	M 16x30	A16	40	15	5	45	18	0,11
MS 31/530	M 20×40	A 20	40	21	7	51	22	0,19
MS 31/600-560	M 20×40	A 20	45	21	7	54	22	0,22
MS 31/630	M 20x40	A 20	50	21	7	61	22	0,27
MS 31/670	M 20x40	A 20	50	21	7	66	22	0,28
MS 31/710	M 24×50	A 24	55	21	7	69	26	0,32
MS 31/800-750	M 24×50	A 24	60	21	7	70	26	0,35
MS 31/850	M 24×50	A 24	70	21	7	71	26	0,41
MS 31/900	M 24×50	A 24	70	21	7	76	26	0,41
MS 31/950	M 24×50	A 24	70	21	7	78	26	0,42
MS 31/1000	M 24×50	A 24	70	21	7	88	26	0,5

25.5 KMFE lock nuts with a locking screw

M 20×1-M 200×3

mm			kN	kg	-	-	Nm
M 20×1	26	32	95	1	4	2	24

Dimensions							Axial load carrying capacity static	Mass	Designations		Grub (set) screw	
G	d_{1}	d_{3}	B	B_{3}	b	h				sp		tightening torque
mm							kN	kg	-		-	Nm
M 170x3	184	220	33	12	16	7	550	3	- KMFE 34	TMFN 30-40	M10	35
M 180x3	194	230	34	12	18	8	590	3,3	- KMFE 36	TMFN 30-40	M10	35
M 190x3	207	240	34	12	18	8	610	3,55	- KMFE 38	TMFN 30-40	M10	35
M 200x 3	217	250	34	12	18	8	625	3,7	- KMFE 40	TMFN 30-40	M10	35

25.6 KMT precision lock nuts with locking pins M 10×0,75 - M 200×3

Dimensions										Axialload carrying capacity static	Mass

mm									kN	kg	-		-	Nm
M 10x0,75	23	28	11	21	14	24	4	2	35	0,045	- KMT 0	HN 2-3	M 5	4,5
M 12x1	25	30	13	23	14	27	4	2	40	0,05	- KMT 1	HN 4	M 5	4,5
M 15x1	28	33	16	26	16	30	4	2	60	0,075	- KMT 2	HN 4	M 5	4,5
M 17x1	33	37	18	29	18	34	5	2	80	0,1	- KMT 3	HN 5-6	M 6	8
M 20x1	35	40	21	32	18	36	5	2	90	0,11	- KMT 4	HN 5-6	M 6	8
M 25x1,5	39	44	26	36	20	41	5	2	130	0,13	- KMT 5	HN 5-6	M 6	8
M 30x1,5	44	49	32	41	20	46	5	2	160	0,16	- KMT 6	HN 7	M 6	8
M $35 \times 1,5$	49	54	38	46	22	50	5	2	190	0,19	- KMT 7	HN 7	M 6	8
M 40x1,5	59	65	42	54	22	60	6	2,5	210	0,3	- KMT 8	HN 8-9	M 8	18
M 45x1,5	64	70	48	60	22	65	6	2,5	240	0,33	- KMT 9	HN 10-11	M 8	18
M 50x1,5	68	75	52	64	25	70	7	3	300	0,4	- KMT 10	HN 10-11	M 8	18
M 55×2	78	85	58	74	25	80	7	3	340	0,54	- KMT 11	HN 12-13	M 8	18
M 60x2	82	90	62	78	26	85	8	3,5	380	0,61	- KMT 12	HN 12-13	M 8	18
M 65×2	87	95	68	83	28	90	8	3,5	460	0,71	- KMT 13	HN 15	M 8	18
M 70x2	92	100	72	88	28	95	8	3,5	490	0,75	- KMT 14	HN 15	M 8	18
M 75×2	97	105	77	93	28	100	8	3,5	520	0,8	- KMT 15	HN 16	M 8	18
M 80x2	100	110	83	98	32	-	8	3,5	620	0,9	- KMT 16	HN 17	M 8	18
M 85×2	110	120	88	107	32	-	10	4	650	1,15	- KMT 17	HN 18-20	M 10	35
M 90x2	115	125	93	112	32	-	10	4	680	1,2	- KMT 18	HN 18-20	M 10	35
M 95×2	120	130	98	117	32	-	10	4	710	1,25	- KMT 19	HN 18-20	M 10	35
M 100x2	125	135	103	122	32	-	10	4	740	1,3	- KMT 20	HN 21-22	M 10	35
M 110x2	134	145	112	132	32	-	10	4	800	1,45	- KMT 22	HN 21-22	M 10	35

25.7 KMTA precision lock nuts with locking pins M 25×1,5-M 200×3

mm									kN	kg	-		-	Nm
M $25 \times 1,5$	35	42	26	20	32,5	11	4,3	4	130	0,13	- KMTA 5	B 40-42	M 6	8
M 30×1,5	40	48	32	20	40,5	11	4,3	5	160	0,16	- KMTA 6	B 45-50	M 6	8
M $35 \times 1,5$	47	53	38	20	45,5	11	4,3	5	190	0,19	- KMTA 7	B 52-55	M 6	8
M 40x1,5	52	58	42	22	50,5	12	4,3	5	210	0,23	- KMTA 8	B 58-62	M 6	8
M 45x1,5	58	68	48	22	58	12	4,3	6	240	0,33	- KMTA 9	B 68-75	M 6	8
M 50x1,5	63	70	52	24	61,5	13	4,3	6	300	0,34	- kMTA 10	B 68-75	M 6	8
M 55x1,5	70	75	58	24	66,5	13	4,3	6	340	0,37	- KMTA 11	B 68-75	M 6	8
M 60×1,5	75	84	62	24	74,5	13	5,3	6	380	0,49	- KMTA 12	B 80-90	M 8	18
M 65x1,5	80	88	68	25	78,5	13	5,3	6	460	0,52	- KMTA 13	B 80-90	M 8	18
M 70x1,5	86	95	72	26	85	14	5,3	8	490	0,62	- KMTA 14	B 95-100	M 8	18
M 75x1,5	91	100	77	26	88	13	6,4	8	520	0,66	- KMTA 15	B 95-100	M 8	18
M 80x2	97	110	83	30	95	16	6,4	8	620	1	- KMTA 16	B 110-115	M 8	18
M 85x2	102	115	88	32	100	17	6,4	8	650	1,15	- kMTA 17	B 110-115	M 10	35
M 90x2	110	120	93	32	108	17	6,4	8	680	1,2	- KMTA 18	B 120-130	M 10	35
M 95x2	114	125	98	32	113	17	6,4	8	710	1,25	- KMTA 19	B 120-130	M 10	35
M 100x2	120	130	103	32	118	17	6,4	8	740	1,3	- kMTA 20	B 120-130	M 10	35
M 110x2	132	140	112	32	128	17	6,4	8	800	1,45	- KMTA 22	B 135-145	M 10	35
M 120x2	142	155	122	32	140	17	6,4	8	860	1,85	- kMTA 24	B 155-165	M 10	35
M 130x3	156	165	132	32	153	17	6,4	8	920	2	- KMTA 26	B 155-165	M 10	35
M 140x3	166	180	142	32	165	17	6,4	10	980	2,45	- KMTA 28	B 180-195	M 10	35
M 150x3	180	190	152	32	175	17	6,4	10	1040	2,6	- kMTA 30	B 180-195	M 10	35
M 160x3	190	205	162	32	185	17	8,4	10	1100	3,15	- KMTA 32	B 205-220	M 10	35

Dimensions									Axial load carrying capacity static	Mass	Designations		Grub (set) screw	
G	d_{1}	d_{3}	d_{4}	B	J_{1}	J_{2}	N_{1}	N_{2}				spanner		tightening torque
mm									kN	kg	-		-	Nm
M 170x3	205	215	172	32	195	17	8,4	10	1160	3,3	- KMTA 34	B 205-220	M 10	35
M 180x3	215	230	182	32	210	17	8,4	10	1220	3,9	- KMTA 36	B 230-245	M 10	35
M 190x3	225	240	192	32	224	17	8,4	10	1280	4,1	- KMTA 38	B 230-245	M 10	35
M 200x3	237	245	202	32	229	17	8,4	10	1340	3,85	- KMTA 40	B 230-245	M 10	35

